Lunes, 28 de diciembre de 2015. Publicado en Curioso » Ciencia.




¡Hola!, ¿te has preguntado que tienen en común las manzanas, las galaxias, el arte de Da Vinci o la escultura el David? pues hoy les voy a contar sobre el número Phi, número áureo o proporción divina y prometo que les sorprenderá. Es un número irracional (con infinitos decimales, como Pi), se representa por la letra griega φ (phi) en minúscula o Φ (Phi) en mayúscula. Es uno de los tres principales números irracionales junto al número Pi (π) y el número de Euler (e). Bien, empecemos.

El número Phi, al igual que el número Pi tiene el valor de 3,1416..., éste tiene un valor: Phi es igual a 1,61803398... con infinitos decimales. Expresado matemáticamente sería lo siguiente:


Es tan fascinante y solo tomaremos dos conceptos importantes relacionados al número Phi: la Divina proporción: aplicado en arquitectura, arte e incluso en la fotografía como ley de los tercios, y en la Secuencia de Fibonacci.

Divina proporción


Es un concepto geométrico, que se da cuando al partir un segmento en dos partes desiguales, dividiendo el total entre la parte más larga obtenemos el mismo resultado que al dividir la más larga entre la más corta.


Es importante mencionar la proporción, pues A es 0.618 veces el tamaño de A+B y a su vez, B es 0.618 veces el tamaño que A. ¿Y por qué es tan importante ésta proporción? En una manzana ordinaria, por ejemplo, sus semillas están siempre en forma de estrella pentagonal con triángulos isósceles cuyo lado menor es 0.618 veces más chico que el siguiente más grande. Las semillas del girasol siguen espirales a proporción de 1 / 0.618. Los anillos de Saturno se separan en proporción 1 / 0.618. Las espirales de las galaxias y los círculos de las conchas de los moluscos y también 1 / 0.618. Incluso las proteínas del ADN ¡También en proporción 1 / 0.618!


Actualmente se acepta la idea de que la belleza misma radica en la simetría y ésta tiene una profunda relación con la proporción áurea. Entre más simétrico sea algo y matemáticamente se acerque a Phi (φ) 1.6180... en proporciones, más bello es ese algo. Eso aplica para el arte, la arquitectura, la fotografía (como ya les mencionaba), en fin, para todo.

Leonardo Da Vinci plasmó la proporción áurea en el Hombre de Vitruvio, la figura de un hombre relacionada con la geometría que se encuentra en un cuadrado y un círculo, donde la distancia de la punta de los dedos a la axila es 0.618 veces la distancia que va de una axila a la punta del brazo opuesto, ésta es la misma distancia que hay del ombligo a los pies.

También, el David de Miguel Ángel repite el número Phi una inmensa cantidad de veces, entre el muslo y la pantorrilla, el cuello y la cabeza, etcétera. Incluso en Elizabeth Hurley o en Brad Pitt se ha analizado la proporción aurea obteniendo resultados muy cercanos como 1 / 0.617 o 1 / 0.619. Por lo que se supone que es la representación ideal de la belleza en las personas sería, expresada de la siguiente manera: la altura total debe ser igual a la distancia entre las puntas de los dedos teniendo los brazos y las manos totalmente abiertos. Esto equivale a ocho palmos, ocho veces la cara o seis veces los pies. En total, es la misma distancia que se obtiene al multiplicar por 1,618 la distancia de nuestro ombligo al suelo. Entendiendo así a la belleza "ideal" matemáticamente.


Secuencia de Fibonacci


El número Phi (φ) pertenece a la secuencia de Fibonacci, pero ¿ésta que es?, bien, en el siglo XIII el matemático Leonardo da Pisa, mejor conocido como Fibonacci, cuando con el objetivo de brindar ejemplos para difundir la numeración decimal en Europa, se preguntó, "¿Cuántas parejas de conejos tendremos a fin de año si comenzamos con una pareja que produce cada mes otra pareja que procrea a su vez a los dos meses de vida?" (obviamente sin tomar en cuenta las condiciones reales necesarias para que esto suceda, es decir, en una situación ideal).

Siendo la respuesta mes con mes, la sucesión de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…

La sucesión se obtiene sumando los dos números previos para obtener el siguiente (1+1=2 1+2=3 2+3=5...). Pero, ¿qué pasa si dividimos un número de la secuencia entre el anterior? El resultado siempre se acerca cada vez más a la proporción áurea: 1÷1 = 1.000, 5÷3 = 1.666, 13 ÷ 8 = 1.615, 89 ÷ 55 = 1.618, 233 ÷ 144 = 1.61805... quedando el resultado por debajo o por encima del número preciso, pero nunca lo alcanza absolutamente. Además, para cualquier valor mayor que 3 en la secuencia, la proporción entre cualquier dos números consecutivos es 1/0.618.

Y es ésta secuencia la que se encuentra en absolutamente todo, ¿cuántos espirales crees que hay en las semillas de las flores de una piña de pino? 3, 5, 8, 13… ¿y en una margarita o un girasol? 13, 21, 34, 55… ¿cuántos pétalos tienen más comunmente las flores?... exacto. También se encuentra esta secuencia en las hojas de los árboles, la reproducción de las células, en la música de algunos personajes famosos de antaño, en las bolsas de valores del mundo y en una cantidad sin fin de cosas.

La representación gráfica de esta secuencia es la famosa espiral de Fibonacci que a su vez cumple a la perfección con la divina proporción y se encuentra regada en la naturaleza, y como ya vimos, implementada en la arquitectura y el arte. Incluso twitter realizó su diseño en base a esta proporción.



Espiral de Fibonacci en la fotografía


Entendiendo que toda cosa que contenga la proporción aurea será más agradable a la vista, en la fotografía se ha adaptado una ley muy próxima a la divina proporción, la famosa ley de los tercios, que consiste en dividir la imagen en tres tercios imaginarios horizontales y verticales, estas divisiones tienen relación directa con la espiral de Fibonacci. Los cuatro puntos de intersección de estas líneas fijan los puntos adecuados para situar el punto o puntos de interés de la foto (llamados puntos fuertes), alejando éste del centro de la fotografía, lo que suele generar mayor atracción en el espectador que cuando el centro de interés esta en el mismo centro de la fotografía.


Resultando mucho más fácil que tratar de hacerlo con la misma espiral, e incluso la mayoría de las cámaras fotográficas incorporan estas divisiones o líneas guía.





Espero que les haya parecido sorprendente conocer este número Phi, quizás muchos conocían la ley de los tercios y no sabían el por qué de su existencia, o habían visto el dibujo de Da Vinci sin saber que significaba. Espero sus comentarios y con gusto más adelante explicaré mejor la ley de los tercios. Saludos.

Enlace: Este video lo explica bien, "El pato Donald y la proporción áurea" (youtube).

Fuentes: Elconfidencial.com | Algarabia.com | dZoom.org
Las imagenes utilizadas en esta entrada no me pertenecen, fueron obtenidas de un buscador de imagenes.
Domingo, 27 de diciembre de 2015. Publicado en Creativo » Tutoriales.




¡Hola!, para ayudarnos en el tema de los retos del 2016 que escribí ayer en el blog, les traigo un tutorial de como hacer la barra de progreso, esa que ponemos debajo de las imagenes de nuestros retos. Hace como dos años les publiqué un creador de estas barras, pero lamentablemente dejó de funcionar, por ello les enseñaré como hacerlo manualmente, con un poco de código HTML y por supuesto, nuestro muy hermoso CSS.

Claro que jugando con el diseño podemos obtener una gran variedad de barras, a continuación les ofrezco algunas junto con su código para que solo copien y peguen en su blog, más abajo les daré una explicación sobre el código.

Diseños cuadrados


Por cuadrado me refiero a las esquinas, pues habrá personas a las que no les guste tanto lo redondeado y estoy de acuerdo, pues el exceso puede quitarle un poco de formalidad o minimalismo al blog. Quizás es por eso que muchos blogger optan por el siguiente:

a) Centrado, el progreso se expande a los lados.

60/100 páginas (60% leído)


Código HTML
<center><div style="width:200px; height:13px; background:#FFFFFF; border:1px solid #666;"><div style="width:60%; height:13px; background:#abdcf0;"></div></div>60/100 páginas (60% leído)</center>



b) Normal, el progreso se expande a la derecha.

60/100 páginas (60% leído)


Código HTML
<div style="width:200px;height:13px;background:#FFFFFF;border:1px solid #666;margin:auto;"><div style="width:60%;height:13px;background:#fad4b8;"></div></div> <center>60/100 páginas (60% leído)</center>



c) Utilizando padding (relleno).

60/100 páginas (60% leído)


Código HTML
<div style='width:200px;height:11px;padding:2px 0px;background:#fff;margin:0px auto;border:1px solid #666;'><div style='width:60%;height:11px;background:#a0c6e1;font-size:3px;line-height:3px;'> </div></div> <center>60/100 páginas (60% leído)</center>

Diseños redondeados


Pero, habrá personas a las que sí les guste lo redondeado, pues si se usa de manera sutil puede resultar llamativo en el diseño del blog:

d) Centrado, el progreso se expande a los lados.

60/100 páginas (60% leído)


Código HTML
<center><div style='width:200px;height:13px;padding:0px;background:#fff;margin:0px auto;border:1px solid #666;border-radius:4px;'><div style='width:60%;height:13px;background:#abdcf0;font-size:3px;line-height:3px;border-radius:4px;'> </div></div></center> <center>60/100 páginas (60% leído)</center>



e) Normal, el progreso se expande a la derecha.

60/100 páginas (60% leído)


Código HTML
<div style='width:200px;height:13px;padding:0px;background:#fff;margin:0px auto;border:1px solid #666;border-radius:4px;'><div style='width:60%;height:13px;background:#eef6bc;font-size:3px;line-height:3px;border-radius:4px;'> </div></div>



f) Utilizando padding (relleno).

60/100 páginas (60% leído)


Código HTML
<div style='width:200px;height:11px;padding:2px 0px;background:#fff;margin:0px auto;border:1px solid #666;border-radius:4px;'><div style='width:60%;height:11px;background:#a0c6e1;font-size:3px;line-height:3px;'> </div></div> <center>60/100 páginas (60% leído)</center>



Pues los anteriores son solamente ejemplos, uno puede personalizar su barra de la manera en que guste por ejemplo la mía es la que pueden ver a continuación, en ella le agrego un color de fondo, y la hago más delgada. U otras con el texto en el centro.

g) Como la uso en el blog.

60/100 páginas (60% leído)


Código HTML
<div style='width:200px;height:4px;padding:2px;background:#f9f9f9;margin: auto;border:1px solid #ccc;border-radius:4px;'><div style='width:60%;height:4px;background:#FB686D;font-size:3px;line-height:3px;'></div></div> <center>60/100 páginas (60% leído)</center>



h) Con texto en el centro.

60%
60/100 páginas (60% leído)


Código HTML
<div style='width:200px;height:13px;padding:0px;background:#fff;margin:0px auto;border:1px solid #666;border-radius:4px;'><div style='width:60%;height:13px;background:#eef6bc;font-size:9px;line-height:13px;border-radius:4px;text-align:center; color:#8e9f25;'><b>60%</b></div></div> <center>60/100 páginas (60% leído)</center>

Una breve explicación del código HTML


Bien, empecemos con el código HTML. Esto se compone de un bloque <div> dentro de otro bloque <div>, como lo siguiente:

<div style="width:200px; height:13px; background:#FFFFFF; border:1px solid #666; margin:auto;"> <div style="width:60%; height:13px; background:#fad4b8;"> </div> </div> <center>60/100 páginas (60% leído)<br /><br /></center>

En el código tenemos principalmente:

1) width: 200px; y height:13px;
Es el tamaño de ancho y alto respectivamente, en ambos <div> debe tener la misma altura. El ancho en el primer <div> será el tamaño total de la barra, mientras que en el segundo <div> tendremos el porcentaje que hemos alcanzado y es el que actualizaremos constantemente.

2) background:#FFFFFF;
Es el color de fondo, en el primer <div>, será el color del fondo del rectangulo, por ello les recomiendo dejarlo en blanco (#ffffff), sin fondo (background:none;) o transparente (background-color:transparent;).

» Si no conoces los colores en HTML, te dejo este enlace para que encuentres muchos. «

3) border:1px solid #666;
Es el atributo del borde y de preferencia debería tenerlo solo el primer <div>. Primero tiene el tamaño del borde en píxeles, después el estilo de borde [existen también: dotted (punteado), solid (normal), double (doble) y dashed (líneas discontinuas)], y por último el color del borde.

4) margin:auto;
Esto significa que el margen se asignará de manera automática y quedará centrada la barra, para usar el efecto de que se expanda hacia los lados no debe llevar este atributo, pues lo asinamos con la etiqueta <center>.

5) padding:2px;
Esto dará un relleno, aunque más bien es como un margen interno que deja el <div>, se le cambia el tamaño en píxeles.

6) border-radius:4px;
Es el radio de la curva que le dará a cada esquina, en caso de que lo tenga.




Pues espero que les sea de ayuda, cualquier duda puedes preguntar en los comentarios y con gusto te ayudaré, además preguntas sobre cualquier tema de diseño de su blog saben que con gusto responderé. Saludos.

Jueves, 24 de diciembre de 2015. Publicado en Literario » Microrrelatos.




Víspera de navidad

Noche de paz, noche de amor, todo duerme en derredor… Eran los villancicos que se escuchaban en todo el centro comercial, donde un jóven no dejaba de mirar a la linda chica sentada a unos metros, su nombre era Sofía, la encargada de envolver los regalos que los niños disfrutarían al día siguiente. Tan cerca estaba de un "hola", que podría significar el comienzo de una feliz historia, o simplemente no ser nada. Cualquier cosa pudo pasar después, pues en mi opinión, si existen esos pequeños milagros de la víspera de navidad. (Alex Corona)

¡Hola y feliz víspera de navidad! Ayer me encontré con un maravilloso reto llamado 5 líneas del blog Adella Brac, consiste en escribir, cada mes, un relato de 5 líneas que incluya las tres palabras propuestas, al azar, por Adella, esto con el fin de poner el cerebro a trabajar, practicar la escritura y divertirse.

El reto de este mes, y el primero para mí, debía incluir las palabras: nombre, encargada y opinión. Al principio me resultó difícil pensar en algo, hasta que de momento surgió, una idea lleva a otra, unas correcciones y listo, honestamente me gustó mucho el resultado, para ser mi primer microrrelato. Espero que te guste, y mientras a seguir mejorando cada mes. Si quieres unirte al reto aquí te dejo el enlace, además podrás conocer a otros participantes y sus relatos.

Pregunta: ¿Qué te pareció mi primer microrrelato? cuéntame

Miércoles, 02 de diciembre de 2015. Publicado en Curioso » De fotografía.




Volvemos a uno de los temas centrales del blog, las fotografías. Iniciamos la temporada navideña y muchos seguramente ya pusieron su arbolito de navidad, pero especialmente para quienes están por hacerlo les quiero compartir una idea genial y divertida que tuvo Kyle Shearrer, un chico de Columbia, Missouri en Estados unidos.

A Kyle, junto con su padre, se les ocurrió hacer una secuencia de fotografías utilizando a sus soldados imperiales (Stormtroopers) de Star Wars para armar su árbol de navidad. El resultado fue una divertida historia que causó furor por todo internet, situación que llegó incluso a cadenas de noticias. También comentó en otra publicación:

"El apoyo de todo el mundo ha sido abrumador, yo todavía no he visto un solo comentario negativo (Además de un tipo que realmente odia árboles falsos por alguna razón) de cualquier manera toda esta experiencia ha sido genial!.

Mi papá y yo hemos tenido mucha diversión sentandonos a leer los comentarios de todos, gracias a todos los que compartieron y comentaron y ayudaron a hacer este post lo que es... Feliz Navidad, Felices Fiestas, y que la fuerza te acompañe!."

» ¡LOS SOLDADOS DE STAR WARS PONIENDO EL ARBOLITO! «


[Galería completa abajo en enlaces]



A mí me causó mucha risa el tipo del tenedor jaja. Espero que esto les sirva de inspiración a muchos para hacer sus fotografías con ayuda de juguetes, sin duda se pueden obtener resultados geniales y en secuencia el resultado es mucho mejor ya que se crea toda una historia.

Pregunta: ¿Qué te pareció la idea de Kyle? cuéntame

Enlaces: Kyle en facebook | Fotos

No te pierdas ninguna publicación... suscríbete y recíbelas por correo electrónico »

Creative Commons License
Todas las fotografías y diseños de Luis Alejandro Corona se encuentran bajo una Licencia Creative Commons 4.0. Esto significa que si quieres usar mis imágenes para cualquier página web puedes hacerlo, es simple, solo tienes que mencionar al autor (que soy yo) y poner un enlace a este blog o a alguna de mis redes sociales. Para cualquier otro uso ponte en contacto conmigo. Las imágenes de terceros que hay en el blog están bajo la licencia de sus legítimos propietarios.
© 2017 Luis Alejandro Corona Ramírez. Todos los derechos reservados - All Rights Reserver. + Info ( Volver arriba ↑ )